
Project Report: ESM1b-e2e

Sahasra Ranjan



Predicting Km and the Unirep Model
- Masked Language Modeling: Technique used in 

NLP for learning the language and representations 
for the given sequences

- UniRep model: Previous model used for Km 
prediction. It is based on LSTM which is slow to 
train

- We are now introducing the new model based on 
Transformer networks (current state of the art for 
NLP tasks)



Transformer 
Network

Attention is All You Need (2017)
- Vaswani et. al.



Token Embeddings

- Why do we need embeddings in the first place? Machines 
don’t understand english languages, but matrices. So we 
want to have a matrix representation/mapping for in input 
language (protein sequences for our case).

- Transformer network takes all of these embedding at once 
for the input, so positional embedding was introduced to 
store the order of these embeddings in the original input.



Positional Embeddings
- We want to store information about the position, 

so why not just add something (and later subtract) 
to the original embedding. But what?

where, pos is the index in the input and i is the 
depth (d-dimensional)



Self-Attention

Say the following sentence is an input sentence 
we want to translate: 

“She is eating a green apple”

What does “eating” in the sentence refer to? 
Self-attention allows it to associate “eating” with 
“apple”. 



Encoder and Decoder



BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018)
- Devlin et al.



Introduction
BERT model was first introduced by 
Google AI team, which helped them 
improve the Google search results for 
complex queries. 



BERT vs Transformers
- BERT has multiple encoder stacked above one another 

whereas Transformer uses two separate stacks, Encoders 
and Decoders which are connected to each other.

- BERT model are pre-trained and the fine-tuning for specific 
task gives much better result in lesser training time as 
compared to Transformers.

- It’s not always to case that the pretrained BERT model is 
available (open-sourced) for the specific task that is 
required.



Classification tasks using the BERT model

- The [CLS] token!!
- The first input token in the BERT model is a <start> token i.e. [CLS].
- This can be used for classification tasks as the output corresponding to [CLS] is a 

d-dimensional vector which stores information about the complete input sequence.



- ESM1b-BERT model for proteins was proposed by the FAIR (Facebook AI Research) 
team which can be used general-purpose protein language modeling

- The FAIR team provided pre-trained weights for the Protein BERT model which we 
used after fine-tuning the weights for our task of Km prediction

ESM1b - Protein BERT - Rives et al.

The MSA transformer: Introduced by the 
Facebook AI Research team, in the first 
quarter of 2021



- Given a pair of enzyme and substrate, we want to 
predict if they will bind during a reaction or not

- For this task, we used the ESM1b model and added a 
fully-connected layer with input as enzyme vector 
(extracted from ESM1b) and substrate vector.

- We trained the fully-connected layer to predict if the 
enzymes and substrate bind together or not.

- This model not only learns the representation but also 
the positional information which improved the 
accuracy of the predictions

Enzyme-Substrate Binding



- We used the UniProt-50 dataset for the language 
modeling task

- Uniprot-50 dataset has close to 33 million protein 
sequences (20GBs). Out of these we extracted 
those which are enzymes (around 3 million, 2GBs)

- Since, ESM1b model can take sequences of length 
at max 1024 so we split the sequences with length 
longer than 1023 tokens

Dataset



Data processing scripts:

- We used AWK scripts for processing and extracting data-points from the original UniProt 
dataset

- These scripts might be handy for other projects related to fasta sequences

Scripts: 
- extract.sh: Split fasta file in the three sub-parts (train, test, val) for given splits
- get_len.sh: Read the fasta file and return the length of each sequence in same order
- head_seq.sh: Extract a-th to b-th sequences from the original file given ‘a’ and ‘b’
- shorten.sh: Extract sequences with length less than the given max length and crop large 

sequences to fit the max length parameter
- shuffle_select.sh: Extract given number of sequences (at a step of total/num)

Repo link to the scripts

https://github.com/sahasrarjn/hhu-computational-biology/tree/master/data


- Devices used:
- Nvidia A100

- 40 GB RAM
- Nvidia RTX-6000 

- 24 GB RAM

- We trained our final model for 10 epochs on 8 
GPUs together by distributing the data across the 
GPUs (Distributed Data Parallel).

- Training our final model took around 100 hrs to 
complete on 8 A100 GPUs

Training



Results

ESM1bft

Started with a val ECE loss of 5.2138

ESM1bts (e2e)



- Attention Is All You Need - Vaswani et al.

- Biological structure and function emerge from scaling unsupervised learning to 250 million 
protein sequences - Rives et al.

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - Devlin et al.
- MSA Transformer - Rao et al.
- hhblits: lightning-fast iterative protein sequence searching by hmm-hmm alignment - Remmert et al.

- The Illustrated Transformer - Jay Alammar

References:

https://jalammar.github.io/illustrated-transformer/


Thank You!!


